| 研究生: |
林紳煬 Lin, Shen-Yang |
|---|---|
| 論文名稱: |
應用微流融合晶片生成不同濃度之褐藻膠囊 Generation of Ca-alginate Microcapsules with Different Concentrations in a Microfluidic Fusion Chip |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 微機電系統 、微流體晶片 、鞘流現象 、電極化 、褐藻酸鈣 、微膠囊 、牛血清蛋白 |
| 外文關鍵詞: | MEMS, microfluidics chip, sheath flow, polarization, calcium alginate microcapsules, BSA |
| 相關次數: | 點閱:247 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微影製程及灌注成型,完成聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)微流體晶片之製備,利用流道電極精準和簡易完成之特性,製作出微米等級立體式溶液電極,取代ITO的平面式金屬電極,並且加上含有微柱體融合區的應用完成主動式融合,經過晶片後端S型觀察區完成量測尺寸之變化。實驗透過微量幫浦分別控制四個流量參數,調整連續相和分離相的流量比例達到不同尺寸和不同濃度之變化的乳化球製備,將此微流體晶片應用於生成均一粒徑且包覆不同牛血清蛋白(Bovine serum albumin, BSA)濃度之褐藻酸鈣(Ca-alginate)微膠囊,實驗結果粒徑分佈範圍可介於181 m ~ 161 m之間,將微流體晶片所生成三種尺寸和三種不同牛血清蛋白濃度的微膠囊置於磷酸鹽緩衝溶液中進行藥物釋放,並經過紫外光-可見光吸收光譜儀量測,發現此微流體晶片所生成的Ca-alginate可成功做出具有單位時間內,不同濃度釋放的藥物載體,證明本研究所設計的微流體晶片可應用於相同藥物濃度來源制備不同尺寸和不同濃度之微膠囊。
SUMMARY
This thesis presents a microfluidic fusion chip for generating ca-alginate microcapsules with different concentrations. Using MEMS technology, we designed and fabricated a PDMS microfluidic chip, which contained a micron rating 3D electrode as a replacement for the planar electrode made of indium tin oxide, a pillar-induced fusion zone, and an s-shaped observation zone. We used this microfluidic chip to generate ca-alginate microcapsules uniformly sized but covered in different bovine serum albumin (BSA) concentrations, and found that the sizes ranged between 181 m and 161 m. After putting the three differently-sized microcapsules and three different BSA concentrations into Phosphate Buffered Saline for drug release, we observed through the UV/Visible Absorption Spectrometer that the Ca-alginate generated by microfluidic chip could release different drug concentrations at the same time. Thus, the proposed microfluidic chip can be applied to producing microcapsules of different sizes and with different drug concentrations.
Keywords: MEMS, microfluidics chip, sheath flow, polarization, calcium alginate microcapsules, BSA
[1] R. Langer, “Drug delivery and targeting,” Nature, 392, pp. 5-10, 1998.
[2] J. Siepmann and A. Göpferich, “Mathematical modeling of bioerodible, polymeric drug delivery systems,” Advanced Drug Delivery Reviews, 48, pp. 229-247, 2001.
[3] A. Yaghmur, A. Aserin and N. Carti, “Phase behavior of microemulsions based on food-grade nonionic surfactants: Effect of polyols and short-chain alcohols,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209, pp. 71-81, 2002.
[4] M. Kreilgaard, “Influence of microemulsions on cutaneous drug delivery,” Advanced Drug Delivery Reviews, 54, pp. 77-98, 2002.
[5] M. Kreilgaard, E. J. Pedersen and J. W. Jaroszewski, “NMR characterization and transdermal drug delivery potential of microemulsion systems,” Journal of Controlled Release, 69, pp. 421-433, 2000.
[6] A. Martinsen, G. Skjakbraek and O. Smidsrod, “Alginate as immobilization material: I. Correlation between chemical and physical-properties of alginate gel beads,” Biotechnology and Bioengineering, 33, pp. 79-89, 1989.
[7] P. D. Vos, B. D. Haan and R. V. Schilfgaarde, “Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules,” Biomaterials, 18, pp. 273-278, 1997.
[8] J. H. Cui, J. S. Goh, P. H. Kim, S. H. Choi and B. J. Lee, “Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles,” Pharmaceutics, 210, pp. 51-59, 2000.
[9] W. Sabra, A. P. Zeng and W. D. Deckwer, “Bacterial alginate: Physiology, product quality and process aspects,” Applied Microbiology and Biotechnology, 56, pp. 315-325, 2001.
[10] X. D. Liu, W. Y. Yu, Y. Zhang, W. M. Xue, W. T. Tu, Y. Xiong, X. J. Ma, Y. Chen and Q. Yuan, “Characterization of structure and diffusion behavior of Ca-alginate beads prepared with external or internal calcium sources,” Microencapsulation, 19, 775-782, 2002.
[11] D. A. Drew and R. T. Lahey, “Phase distribution mechanisms in two-phase flow in a circular pipe,” Fluid Mechanics, 117, pp. 91-106, 1982.
[12] R. T. Lahey and D. A. Drew, “The analysis of two-phase flow and heat transfer using a multidimensional, four field, two fluid model,” Nuclear Engineering and Design, 204, pp. 29-44, 2001.
[13] T. C. Kuo, A. S. Yang and C. C. Chieng, ‘‘Bubble size and system pressure effects on phase distribution for two phase turbulent bubbly flows,’’ Mechanical Engineering Science, 215, pp. 121-132, 2001.
[14] M. Ishii, “Thermal-fluid dynamics of two-phase flow,” Eyrolles, Paris, 1975.
[15] M. Ishii and K. Mishima, “Two-fluid model hydrodynamic constitutive relation,” Nuclear Engineering and Design, 82, pp. 107-126, 1984.
[16] M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE Journal, 25, pp. 843-855, 1979.
[17] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions,” Langmuir, 21, pp. 7629-7632, 2005.
[18] K. Liu, H. J. Ding, J. Liu, Y. Chen and X. Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 22, pp. 9453-9457, 2006.
[19] H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R. M. A. Sullan, G. C. Walker and E. Kumacheva, “Microfluidic production of biopolymer microcapsules with controlled morphology,” American Chemical Society, 128, pp. 12205-12210, 2006.
[20] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab on a Chip, 4, pp. 292-298, 2004.
[21] Y. C. Tan and A. P. Lee, “Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system,” Lab on a Chip, 5, pp. 1178-1183, 2005.
[22] Y. C. Tan, V. Cristini and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensors and Actuators B-Chemical, 114, pp. 350-356, 2006.
[23] S. Vanapalli, A. G. Banpurkar, D. V. D. Ende, M. H. Duits and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular Microchannels,” Lab on a Chip, 9, pp. 982-990, 2009.
[24] M. B. Romanowsky, A. R. Abate, A. Rotem, C. Holtze and D. A. Weitz, “High throughput production of single core double emulsions in a parallelized microfluidic device,” Lab on a Chip, 12, pp. 802-807, 2012.
[25] X. Niu, S. Gulati, J. B. Edel and A. J. deMello, ” Pillar-induced droplet merging in microfluidic circuits,” Lab on a Chip, 8, pp. 1837-1841, 2008.
[26] P. Atten and F. Aitken, “Electrocoalescence Criterion for Two Close Water Drops,” IEEE Transactions on Electron Devices, 46, pp. 1578-1585, 2010.
[27] M. Chabert, K. D. Dorfman and J. L. Viovy, “Droplet fusion by alternating current (AC) field electrocoalescence in microchannels,” Electrophoresis, 26, pp. 3706–3715, 2005.
[28] X. Niu, M. Zhang, J. Wu, W. Wen and P. Sheng, ‘‘Generation and manipulation of ‘‘smart’’ droplets,’’ Soft Matter, 5, pp. 576-581, 2009.
[29] J. Ndoumbe, A. Beroual and A. M. Imano, “Behavior of water droplets on insulator surfaces submitted to DC voltage–coalescence.” Electrical Insulation and Dielectric Phenomena, pp. 725-728, 2012.
[30] C. Priest, S. Herminghaus and R. Seemannc, “Controlled electrocoalescence in microfluidics: Targeting a single lamella,” Applied Physics Letters, 89, 134101, 2006.
[31] L. M. Fidalgo, G. Whyte, D. Bratton, C. Kaminski, C. Abell and T. S. Huck, “From Microdroplets to Microfluidics: Selective Emulsion Separation in Microfluidic Devices,” Angewandte Chemie International Edition, 47, pp. 2042-2045, 2008.
[32] A. C. Siegel, S. S. Shevkoplyas, D. B. Weibel, D. A. Bruzewicz, A. W. Martinez and G. M. Whitesides, “Cofabrication of Electromagnets and Microfluidic Systems in Poly(dimethylsiloxane),” Angewandte Chemie International Edition, 45, pp. 6877-6882, 2006.
[33] A. C. Siegel, D. A. Bruzewicz, D. B. Weibel and G. M. Whitesides, “Microsolidics: Fabrication of Three-Dimensional Metallic.Microstructures in Poly(dimethylsiloxane),” Advanced Materials, 19, pp. 727-733, 2007.
[34] J. C. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. E. Harrak, L. Frenz, C. Rick, M. L. Samuels, J. B. Hutchison, J. J. Agresti, D. R. Link, D. A. Weitzc and A. D. Griffiths, ”Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity,” Lab on a Chip, 9, pp. 1850-1858, 2009.
[35] A. R. Thiam, N. Bremond and J. Bibette, “Breaking of an Emulsion under an ac Electric Field.” Physical Review Lrtters, 102, pp. 188304-188306, 2009.
[36] A. R. Abate, T. Hung, P. Mary, J. J. Agresti and D. A. Weitz, “High-throughput injection with microfluidics using picoinjectors.” PNAS, 107, pp. 19163-19166, 2010.
[37] H. Andersson, C. Jönsson, C. Moberg and G. Stemme, “Consecutive microcontact printing-ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B-Chemical, 79, pp. 78-84, 2001.
[38] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Adhesion Science and Technology, 8, pp. 1063-1075, 1994.
[39] L. Frenz, A. E. Harrak, M. Pauly, S. B. Colin, A. D. Griffiths and J. C. Baret, “Droplet-Based Microreactors for the Synthesis of Magnetic Iron Oxide Nanoparticles,” Angewandte Chemie Internation Edition, 47, pp. 6817-6820, 2008.
[40] A. K. Srivastava, D. N. Ridhurkar and S. Wadhwa, “Floating microspheres of cimetidine: Formulation, characterization and in vitro evaluation,” Acta Pharmaceutica, 55, pp. 277-285, 2005.
校內:2019-09-11公開