簡易檢索 / 詳目顯示

研究生: 方宏義
Fang, Hong-Yi
論文名稱: 用於殺菌及螢光顯影與偵測之碳量子點奈米複合物
Carbon quantum dots-based nanocomposites for bacterial killing and fluorescence imaging and detection
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 碳量子點銀奈米粒子殺菌螢光顯影β-環糊精螢光偵測對硝基苯酚對硝基苯胺
外文關鍵詞: carbon quantum dots, silver nanoparticles, bacteria-killing, fluorescence imaging, β-cyclodextrin, fluorescence detection, 4-nitrophenol, 4-nitroaniline
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究第一部份利用精胺酸與硝酸銀以水熱法一步製備出銀/碳量子點奈米複合物,應用於細菌的毒殺與螢光顯影。結果顯示,相較於不含銀的碳量子點而言,所得銀/碳量子點不僅因為含有銀而對大腸桿菌有更加顯著的毒殺作用外,且因保有碳量子點的螢光特性,在波長405 nm的雷射光激發下,也可利用掃描式雷射共軛焦顯微鏡進行細菌的螢光顯影與位置標記。證實所得銀/碳量子點確實兼具碳量子點的螢光特性與銀奈米粒子的殺菌特性,在細菌的毒殺與螢光顯影上具有應用潛力。
      第二部分的研究是將檸檬酸與β-環糊精的混合粉末在200°C油浴下直接加熱,製備出粒徑約9~10 nm之β-環糊精修飾碳量子點奈米複合物,應用於對硝基苯酚與對硝基苯胺之螢光偵測。探討β-環糊精含量對螢光強度的影響,得知10 wt%β-環糊精修飾之碳量子點具有最強的螢光。將其用於對硝基苯酚的螢光偵測上,發現在0.1~10 μM與10~100 μM兩範圍有良好的線性關係,偵測極限為0.0871 μM;在對硝基苯胺的螢光偵測上,則發現在0.1~25 μM與25~75 μM兩範圍有良好的線性關係,偵測極限為0.0748 μM。證實適當的β-環糊精修飾,確實有助於碳量子點螢光的增強,且所得之β-環糊精修飾碳量子點在毒性有機汙染物的螢光偵測具有應用潛力。

    In the first part of this study, carbon quantum dots/silver (C-dots/Ag) nanocomposite was prepared for the killing and fluorescence imaging of bacteria via the one-step hydrothermal reaction of L -arginine and silver nitrate. As compared to the carbon quantum dots without silver, the resulting C-dots/Ag not only exhibited the much stronger killing capability for E. Coli owing to the presence of silver but also could be used for the fluorescence imaging and labeling of bacteria by a laser scanning microscope under the irradiation of 405 nm laser because they retained the fluorescence property of C-dots. It was demonstrated that the resulting C-dots/Ag indeed possessed both the fluorescent property of C-dots and the bacteria-killing property of Ag nanoparticles, which have potential applications for the killing and fluorescence imaging of bacteria.
    In the second part, β-cyclodextrin-modified carbon quantum dots (βCD-CQDs) of about 9~10 nm were prepared by the direct heating of citric acid and βCD in the oil bath at 200℃ for the fluorescence detection of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA). By investigating the effect of βCD amount on the fluorescence intensity, it was found that the CQDs modified with 10wt% βCD exhibited the strongest fluorescence. For their use in the fluorescence detection of 4-NP, two linear concentration ranges of 0.1~10 μM and 10~100 μM with a limit of detection (LOD) of 0.0871 μM were obtained. For the fluorescence detection of 4-NA, two linear concentration ranges of 0.1~25 μM and 25~75 μM with a LOD of 0.0748 μM were obtained. It was demonstrated that the appropriate modification by βCD indeed was helpful for enhancing the fluorescence intensity of CQDs. Also, the resulting βCD-CQDs have potential application for the fluorescence detection of toxic organic contaminants.

    目錄 中文摘要 I Abstract II Extended Abstract IV 誌謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 碳量子點 1 1.1.1 前言 1 1.1.2 碳量子點之結構與特性 1 1.1.3 碳量子點之製備 3 1.1.4 碳量子點之應用 5 1.2 大腸桿菌 7 1.2.1 細菌之簡介 7 1.2.2 大腸桿菌之簡介 9 1.3 抗菌材料 11 1.4 β-環糊精 17 1.5 硝基苯酚與硝基苯胺 20 1.6 螢光偵測材料 22 1.7 研究動機 24 第二章 基礎理論 25 2.1 水熱合成法 25 2.1.1水熱合成法的特點與原理 25 2.1.2水熱合成法的反應機制 27 2.2 螢光發光及螢光偵測之原理 29 2.2.1螢光原理簡介 29 2.2.2螢光偵測原理 30 2.2.3螢光強度降低之機制 31 第三章 實驗方法 32 3.1 實驗藥品與儀器 32 3.1.1 實驗藥品 32 3.1.2 實驗儀器 34 3.1.3 實驗材料 36 3.2 材料製備 37 3.2.1 碳量子點之製備 37 3.2.2 銀/碳量子點之製備 39 3.2.3 β–環糊精修飾碳量子點之製備 41 3.3 材料鑑定與分析 43 3.3.1 銀/碳量子點之鑑定與分析 43 3.3.2 β–環糊精修飾碳量子點之鑑定與分析 45 3.4 細菌實驗之製備 46 3.4.1 細菌培養液、培養基及磷酸緩衝溶液之製備 46 3.4.2細菌培養方法 47 3.4.3 細菌凍結方法 48 3.4.4 細菌數目之計算及檢量線之製作 49 3.5 殺菌實驗 51 3.6 細菌之螢光顯影實驗 52 3.7 螢光偵測實驗 53 3.7.1 β–環糊精比例對螢光強度之影響 53 3.7.2 對硝基苯酚之螢光偵測 54 3.7.3 對硝基苯胺之螢光偵測 55 3.7.4 外加干擾物之測試 56 第四章 結果與討論 57 4.1 銀/碳量子點之特性與應用 57 4.1.1銀/碳量子點之鑑定與特性分析 57 4.1.2銀/碳量子點之殺菌特性 65 4.1.3銀/碳量子點之螢光顯影結果 68 4.2 β–環糊精修飾碳量子點之特性與應用 69 4.2.1 β–環糊精修飾碳量子點之鑑定與特性分析 69 4.2.2 β–環糊精修飾碳量子點之螢光偵測結果 75 第五章 結論 86 參考文獻 88   表目錄 表1.1 石墨烯及其衍生物作為抗菌材料之整理 13 表1.2 碳量子點及其衍生物作為抗菌材料之整理 16 表1.3 不同材料偵測對硝基苯酚與對硝基苯胺之整理 21 表1.4 碳量子點及其衍生物應用於螢光偵測之整理 23   圖目錄 圖1.1 碳量子點結構示意圖[1] 2 圖1.2 碳量子點製備方式示意圖[3] 4 圖1.3隱形墨水製成之薄膜示意圖[4] 6 圖1.4碳量子點之反應示意圖[5] 6 圖1.5 革蘭氏陰性菌與革蘭氏陽性菌之結構比較[7] 8 圖1.6 大腸桿菌[7] 10 圖1.7 碳量子點製備示意圖與螢光顯影之結果[27] 14 圖1.8 碳量子點製備示意圖與實際應用於傷口敷料之效果[28] 15 圖1.9 β-環糊精之結構示意圖[52] 18 圖1.10 β-環糊精修飾碳量子點偵測β-半乳糖苷酶之示意圖[54] 19 圖1.11 β-環糊精修飾於多孔性奈米碳材之流程示意圖[52] 19 圖2.1 水熱合成法之反應裝置示意圖[77] 26 圖2.2 (a)原位成長機制與(b)溶解-析出機制示意圖[81] 28 圖2.3 螢光偵測示意圖[83] 30 圖2.4 螢光強度下降之機制示意圖[84] 31 圖 3.1 碳量子點之製備流程圖 38 圖 3.2 銀/碳量子點之製備流程圖 40 圖 3.3 β–環糊精修飾碳量子點之製備流程圖 42 圖 3.4 E. coli濃度之檢量線 50 圖 4.1 C-dots(a,b)與C-dots/Ag(c,d)之TEM圖與其粒徑分布,插圖為HRTEM圖 58 圖 4.2 C-dots與C-dots/Ag之XRD圖譜 60 圖 4.3 C-dots(a)與C-dots/Ag(b)之 EDX圖譜 61 圖 4.4 C-dots與C-dots/Ag之UV-Vis吸收光譜 63 圖 4.5 C-dots(a)與C-dots/Ag(b)之螢光光譜,插圖為材料在白光(左)與波長366 nm的紫外光(右)照射下之照片 64 圖 4.6未加(A)、加入C-dots(B,C)與加入C-dots/Ag(D,E)之E. coli培養情形及細菌生存率之量化圖 66 圖 4.7 E. colI於未加(a,b)與加入C-dots/Ag(c,d)之TEM圖 67 圖 4.8 E. coli在含C-dots/Ag的環境下以雷射共軛焦顯微鏡於 405 nm雷射下(a)白光下(b)合併(c)觀察之影像 68 圖 4.9 CQDs (a)與βCD-CQDs(b)之HRTEM圖 70 圖 4.10 CQDs與βCD-CQDs之XRD圖譜 71 圖 4.11 CQDs (a)與βCD-CQDs (b)之EDX圖譜 73 圖 4.12 βCD、CQDs與βCD-CQDs之FTIR圖譜 74 圖 4.13 不同比例β–環糊精修飾碳量子點之螢光光譜,插圖為βCD-CQDs-10%在白光(左)與波長366 nm的紫外光(右)照射下之照片 76 圖 4.14 CQDs螢光偵測對硝基苯酚之螢光光譜圖 79 圖 4.15 βCD-CQDs-10%螢光偵測對硝基苯酚之螢光光譜圖 79 圖 4.16 βCD-CQDs-10%螢光偵測不同濃度對硝基苯酚與其螢光強度之線性關係圖 80 圖 4.17 βCD-CQDs-10%於不同化合物的環境下螢光偵測對硝基苯酚之螢光強度圖 81 圖 4.18 βCD-CQDs-10%螢光偵測對硝基苯胺之螢光光譜圖 83 圖 4.19 βCD-CQDs-10%螢光偵測不同濃度對硝基苯胺與其螢光強度之線性關係圖 84 圖 4.20 βCD-CQDs-10%於不同化合物的環境下螢光偵測對硝基苯胺之螢光強度圖 85

    參考文獻
    [1] J. Zuo, T. Jiang, X. Zhao, X. Xiong, S. Xiao, Z. Zhu, Preparation and application of fluorescent carbon dots, J. Nanomaters, 2015, 1, 1-13.
    [2] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A, 2017, 5, 3717-3734.
    [3] B. De, N. Karak, Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications, J. Mater. Chem. A, 2017, 5, 1826-1859.
    [4] Y. Liu, L. Zhou, Y. Li, R. Deng, H. Zhang, Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting, Nanoscale, 2017, 9, 491-496.
    [5] A. Tyagi, K. M. Tripathi, N. Singh, S. Choudhary, R. K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis, RSC Adv., 2016, 6, 72423-72432.
    [6] B. Li, X. Wang, Y. Guo, A. Iqbal, Y. Dong, W. Li, W. Liu, W. Qin, S. Chen, X. Zhou, Y. Yang, One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging, Dalton Trans., 2016, 45, 5484-5491.
    [7] S. Baron, Medical Microbiology 4th, Univ of Texas Medical Branch, USA, 1996.
    [8] P. M. Fratamico, C. DebRoy, Y. Liu, The DNA sequence of the Escherichia coli O22 o-antigen gene cluster and detection of pathogenic strains belonging to E. coli serogroups O22 and O91 by multiplex PCR assays targeting virulence genes and genes in the respective o-antigen gene clusters, Food Anal. Method., 2008, 2, 169-179.
    [9] H. Kubitschek, Cell volume increase in Escherichia coli after shifts to richer media, J. Bacteriol., 1990, 172, 94-101.
    [10] R. Bentley, R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria, Microbiol. Rev., 1982, 46, 241.
    [11] R. L. Vogt, L. Dippold, Escherichia coli O157: H7 outbreak associated with consumption of ground beef, Public Health Rep., 2005, 120, 174-178.
    [12] P. Geng, X. Zhang, Y. Teng, Y. Fu, L. Xu, M. Xu, L. Jin, W. Zhang, A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli, Biosens. Bioelectron., 2011, 26, 3325-3330.
    [13] S. D. Santos-Filho, C. L. Diniz, F. S. d. Carmo, A. d. S. d. Fonseca, M. Bernardo-Filho, Influence of an extract of Juglans regia on the growth of Escherichia coli, on the electrophoretic profile of plasmid DNA and on the radiolabeling of blood constituents, Braz. Arch. Biol. Technol., 2008, 51, 163-168.
    [14] H. N. Lim, N. M. Huang, C. H. Loo, Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties, J. Non Cryst. Solids, 2012, 358, 525-530.
    [15] L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives, Small, 2016, 12, 4165-4184.
    [16] H. Pandey, V. Parashar, R. Parashar, R. Prakash, P. W. Ramteke, A. C. Pandey, Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate, Nanoscale, 2011, 3, 4104-4108.
    [17] Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater., 2008, 114, 431-439.
    [18] L. Wang, J. Chen, L. Shi, Z. Shi, L. Ren, Y. Wang, The promotion of antimicrobial activity on silicon substrates using a "click" immobilized short peptide, Chem. Commun., 2014, 50, 975-977.
    [19] Z. Jia, W. Xu, Synthesis and antibacterial activities of quaternary ammonium salt of chitosan, Carbohydr. Res., 2001, 333, 1-6.
    [20] K. Kummerer, Resistance in the environment, J. Antimicrob. Chemother., 2004, 54, 311-320.
    [21] C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, C.-M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 2006, 5, 916-924.
    [22] D. Rana, T. Matsuura, Surface modifications for antifouling membranes, Chem. Rev., 2010, 110, 2448-2471.
    [23] M. Ahamed, M. S. Alsalhi, M. K. Siddiqui, Silver nanoparticle applications and human health, Clin. Chim. Acta, 2010, 411, 1841-1848.
    [24] D. T. McLean, F. T. Lundy, D. J. Timson, IQ-motif peptides as novel anti-microbial agents, Biochimie, 2013, 95, 875-880.
    [25] M. R. Yeaman, N. Y. Yount, Mechanisms of antimicrobial peptide action and resistance, Pharmacol. Rev., 2003, 55, 27-55.
    [26] I. E. Mejias Carpio, C. M. Santos, X. Wei, D. F. Rodrigues, Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells, Nanoscale, 2012, 4, 4746-4756.
    [27] J. Liu, S. Lu, Q. Tang, K. Zhang, W. Yu, H. Sun, B. Yang, One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis, Nanoscale, 2017, 9, 7135-7142.
    [28] M. Omidi, A. Yadegari, L. Tayebi, Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel, RSC Adv., 2017, 7, 10638-10649.
    [29] G. Gollavelli, C.-C. Chang, Y.-C. Ling, Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control, ACS Sustain. Chem. Eng., 2013, 1, 462-472.
    [30] C. Santhosh, P. Kollu, S. Doshi, M. Sharma, D. Bahadur, M. T. Vanchinathan, P. Saravanan, B.-S. Kim, A. N. Grace, Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application, RSC Adv., 2014, 4, 28300.
    [31] C. M. Santos, M. C. Tria, R. A. Vergara, F. Ahmed, R. C. Advincula, D. F. Rodrigues, Antimicrobial graphene polymer (PVK-GO) nanocomposite films, Chem. Commun., 2011, 47, 8892-8894.
    [32] F. Perreault, M. E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci. Technol. Lett., 2014, 1, 71-76.
    [33] P. K. S. Mural, A. Banerjee, M. S. Rana, A. Shukla, B. Padmanabhan, S. Bhadra, G. Madras, S. Bose, Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE, J. Mater. Chem. A, 2014, 2, 17635-17648.
    [34] Z.-B. Zhang, J.-J. Wu, Y. Su, J. Zhou, Y. Gao, H.-Y. Yu, J.-S. Gu, Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance, Appl. Surf. Sci., 2015, 332, 300-307.
    [35] A. Nourmohammadi, R. Rahighi, O. Akhavan, A. Moshfegh, Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria, J. Alloys Compd., 2014, 612, 380-385.
    [36] L. Zhong, K. Yun, Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties, Int. J. Nanomedicine, 2015, 10 Spec Iss, 79-92.
    [37] M. L. Bhaisare, B. S. Wu, M. C. Wu, M. S. Khan, M. H. Tseng, H. F. Wu, MALDI MS analysis, disk diffusion and optical density measurements for the antimicrobial effect of zinc oxide nanorods integrated in graphene oxide nanostructures, Biomater. Sci., 2016, 4, 183-194.
    [38] Y. Huang, T. Wang, X. Zhao, X. Wang, L. Zhou, Y. Yang, F. Liao, Y. Ju, Poly(lactic acid)/graphene oxide-ZnO nanocomposite films with good mechanical, dynamic mechanical, anti-UV and antibacterial properties, J. Chem. Technol. Biotechnol., 2015, 90, 1677-1684.
    [39] Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria, ACS Appl. Mater. Interfaces, 2014, 6, 2791-2798.
    [40] A. Ray Chowdhuri, S. Tripathy, S. Chandra, S. Roy, S. K. Sahu, A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation, RSC Adv., 2015, 5, 49420-49428.
    [41] X. An, H. Ma, B. Liu, J. Wang, Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites, J. Nanomater., 2013, 2013, 1-7.
    [42] S. Some, S.-M. Ho, P. Dua, E. Hwang, Y. H. Shin, H. Yoo, J.-S. Kang, D.-k. Lee, H. Lee, Dual functions of highly potent graphene derivative–poly-L-lysine composites to inhibit bacteria and support human cells, ACS Nano, 2012, 6, 7151-7161.
    [43] S. Dong, L. Hu, J. Feng, Y. Pi, Q. Li, Y. Li, M. Liu, J. Sun, J. Sun, Ultrasonic-assisted rational design of uniform rhombus-shaped ZnMoOx on graphene for advanced sunlight-driven photocatalysts, functional supercapacitor electrodes, and antibacterial platforms, RSC Adv., 2014, 4, 64994-65003.
    [44] I. Y. Kim, S. Park, H. Kim, S. Park, R. S. Ruoff, S.-J. Hwang, Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film, Adv. Funct. Mater., 2014, 24, 2288-2294.
    [45] R. Major, M. Sanak, A. Mzyk, L. Lipinska, M. Kot, P. Lacki, F. Bruckert, B. Major, Graphene based porous coatings with antibacterial and antithrombogenous function—Materials and design, Arch. Civ. Mech. Eng., 2014, 14, 540-549.
    [46] H. Sun, N. Gao, K. Dong, J. Ren, X. Qu, Graphene quantum dots-band-aids used for wound disinfection, ACS Nano, 2014, 8, 6202-6210.
    [47] Q. Dou, X. Fang, S. Jiang, P. L. Chee, T.-C. Lee, X. J. Loh, Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties, RSC Adv., 2015, 5, 46817-46822.
    [48] J. Yang, X. Zhang, Y. H. Ma, G. Gao, X. Chen, H. R. Jia, Y. H. Li, Z. Chen, F. G. Wu, Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications, ACS Appl. Mater. Interfaces, 2016, 8, 32170-32181.
    [49] W. Bing, H. Sun, Z. Yan, J. Ren, X. Qu, Programmed bacteria death induced by carbon dots with different surface charge, Small, 2016, 12, 4713-4718.
    [50] M. J. Meziani, X. Dong, L. Zhu, L. P. Jones, G. E. LeCroy, F. Yang, S. Wang, P. Wang, Y. Zhao, L. Yang, R. A. Tripp, Y. P. Sun, Visible-light-activated bactericidal functions of carbon "quantum" dots, ACS Appl. Mater. Interfaces, 2016, 8, 10761-10766.
    [51] P. Karfa, E. Roy, S. Patra, S. Kumar, A. Tarafdar, R. Madhuri, P. K. Sharma, Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd2+/Fe3+, cell imaging and enhanced antibacterial activity, RSC Adv., 2015, 5, 58141-58153.
    [52] G. Zolfaghari, β-Cyclodextrin incorporated nanoporous carbon: Host–guest inclusion for removal of p-nitrophenol and pesticides from aqueous solutions, Chem. Eng. J., 2016, 283, 1424-1434.
    [53] E. Jalalvandi, J. Cabral, L. R. Hanton, S. C. Moratti, Cyclodextrin-polyhydrazine degradable gels for hydrophobic drug delivery, Mater. Sci. Eng. C. Mater. Biol. Appl., 2016, 69, 144-153.
    [54] C. Tang, J. Zhou, Z. Qian, Y. Ma, Y. Huang, H. Feng, A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells, J. Mater. Chem. B, 2017, 5, 1971-1979.
    [55] G. H. G. Ahmed, R. B. Laíño, J. A. G. Calzón, M. E. D. García, Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters, Microchim. Acta, 2014, 182, 51-59.
    [56] E. Moctezuma, E. Leyva, G. Palestino, H. de Lasa, Photocatalytic degradation of methyl parathion: Reaction pathways and intermediate reaction products, J. Photochem. Photobio. A: Chem., 2007, 186, 71-84.
    [57] H.-M. Huang, K.-M. Wang, S.-S. Huang, L.-J. Zhou, D. Li, Optical membrane for o-nitroaniline based on fluorescence energy transfer between a small molecule and a conjugated polymer, Anal. Chim. Acta, 2003, 481, 109-117.
    [58] P. Wiench, B. Grzyb, Z. González, R. Menéndez, B. Handke, G. Gryglewicz, pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode, J. Electroanal. Chem., 2017, 787, 80-87.
    [59] A. Khalid, M. Arshad, D. E. Crowley, Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater, Water Res., 2009, 43, 1110-1116.
    [60] C. Nistor, A. Oubiña, M.-P. Marco, D. Barceló, J. Emnéus, Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol, Anal. Chim. Acta, 2001, 426, 185-195.
    [61] Y. Tang, R. Huang, C. Liu, S. Yang, Z. Lu, S. Luo, Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite, Anal. Methods, 2013, 5, 5508.
    [62] M. Santhiago, C. S. Henry, L. T. Kubota, Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol, Electrochim. Acta, 2014, 130, 771-777.
    [63] A. Gupta, B. C. Kim, E. Edwards, C. Brantley, P. Ruffin, Covalent functionalization of zinc oxide nanowires for high sensitivity p-nitrophenol detection in biological systems, Mater. Sci. Eng. : B, 2012, 177, 1583-1588.
    [64] A. A. Ibrahim, A. Umar, R. Kumar, S. H. Kim, A. Bumajdad, S. Baskoutas, Sm2O3-doped ZnO beech fern hierarchical structures for nitroaniline chemical sensor, Ceram. Int., 2016, 42, 16505-16511.
    [65] S. Chen, X. Chen, T. Xia, Q. Ma, A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots, Biosens. Bioelectron., 2016, 85, 903-908.
    [66] R. Ahmad, N. Tripathy, M. S. Ahn, Y. B. Hahn, Development of highly-stable binder-free chemical sensor electrodes for p-nitroaniline detection, J. Colloid Interface Sci., 2017, 494, 300-306.
    [67] N. Ahmad, A. Umar, R. Kumar, M. Alam, Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor, Ceram. Int., 2016, 42, 11562-11567.
    [68] S. Wang, H. Niu, S. He, Y. Cai, One-step fabrication of high quantum yield sulfur- and nitrogen-doped carbon dots for sensitive and selective detection of Cr(VI), RSC Adv., 2016, 6, 107717-107722.
    [69] T. Liu, J. X. Dong, S. G. Liu, N. Li, S. M. Lin, Y. Z. Fan, J. L. Lei, H. Q. Luo, N. B. Li, Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg2+ ions detection, J. Hazard. Mater., 2017, 322, 430-436.
    [70] A. Dutta Chowdhury, R. A. Doong, Highly sensitive and selective detection of nanomolar ferric ions using dopamine functionalized graphene quantum dots, ACS Appl. Mater. Interfaces, 2016, 8, 21002-21010.
    [71] C. Wang, D. Sun, Y. Chen, K. Zhuo, A hydrothermal route for synthesizing highly luminescent sulfur- and nitrogen-co-doped carbon dots as nanosensors for Hg2+, RSC Adv., 2016, 6, 86436-86442.
    [72] X. Yan, Y. Song, C. Zhu, J. Song, D. Du, X. Su, Y. Lin, Graphene quantum dot-MnO2 nanosheet based optical sensing platform: A sensitive fluorescence "turn off-on" nanosensor for glutathione detection and intracellular imaging, ACS Appl. Mater. Interfaces, 2016, 8, 21990-21996.
    [73] Q. Li, Q. Huang, J.-J. Zhu, W.-G. Ji, Q.-X. Tong, Carbon dots–quinoline derivative nanocomposite: facile synthesis and application as a “turn-off” fluorescent chemosensor for detection of Cu2+ions in tap water, RSC Adv., 2016, 6, 87230-87236.
    [74] H. Wang, Q. Lu, Y. Hou, Y. Liu, Y. Zhang, High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid, Talanta, 2016, 155, 62-69.
    [75] L. Xu, G. Fang, J. Liu, M. Pan, R. Wang, S. Wang, One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing, J. Mater. Chem. A, 2016, 4, 15880-15887.
    [76] L. Wang, Y. Bi, J. Gao, Y. Li, H. Ding, L. Ding, Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples, RSC Adv., 2016, 6, 85820-85828.
    [77] M. A. Einarsrud, T. Grande, 1D oxide nanostructures from chemical solutions, Chem. Soc. Rev., 2014, 43, 2187-2199.
    [78] S. Sōmiya, R. Roy, Hydrothermal synthesis of fine oxide powders, B. Mater. Sci., 2000, 23, 453-460.
    [79] J. R. Kim, K. Y. Lee, M. J. Suh, S. K. Ihm, Ceria–zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support, Catal. Today, 2012, 185, 25-34.
    [80] R. A. Laudise, Hydrothermal synthesis of single crystals, Chem. Eng. News, 1987, 65, 30-43.
    [81] J. O. Eckert, C. C. Hung Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J. Am. Ceram. Soc., 1996, 79, 2929-2939.
    [82] J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springers, 2006.
    [83] 施正雄,化學感測器,初版,五南圖書出版股份有限公司, 2015.
    [84] G. Qianqian, L. Fei, Y. Jiang, D. Huajun, F. Tianhua, K. Xingming, A novel p-nitroaniline fluorescent sensor based on molecular recognition of carboxymethyl-β-cyclodextrin-capped ZnO/ZnS/MgO nanocomposites, Anal. Sci., 2011, 27, 851-851.
    [85] C. Li, W. Liu, Y. Ren, X. Sun, W. Pan, J. Wang, The selectivity of the carboxylate groups terminated carbon dots switched by buffer solutions for the detection of multi-metal ions, Sens. Actuators B: Chem., 2017, 240, 941-948.

    下載圖示 校內:2022-08-16公開
    校外:2022-08-16公開
    QR CODE